Noncoercive quasilinear elliptic operators with singular lower order terms

نویسندگان

چکیده

Abstract We consider a family of quasilinear second order elliptic differential operators which are not coercive and defined by functions in Marcinkiewicz spaces. prove the existence solution to corresponding Dirichlet problem. The associated obstacle problem is also solved. Finally, we show higher integrability when datum more regular.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary value problems for elliptic operators with singular drift terms

Let Ω be a Lipschitz domain in R, n ≥ 3, and L = divA∇ − B∇ be a second order elliptic operator in divergence form with real coefficients such that A is a bounded elliptic matrix and the vector field B ∈ Lloc(Ω) is divergence free and satisfies the growth condition dist(X, ∂Ω)|B(X)| ≤ ε1 for ε1 small in a neighbourhood of ∂Ω. For these elliptic operators we will study on the basis of the theory...

متن کامل

Renormalized Solutions for Strongly Nonlinear Elliptic Problems with Lower Order Terms and Measure Data in Orlicz-Sobolev Spaces

The purpose of this paper is to prove the existence of a renormalized solution of perturbed elliptic problems$ -operatorname{div}Big(a(x,u,nabla u)+Phi(u) Big)+ g(x,u,nabla u) = mumbox{ in }Omega,  $ in the framework of Orlicz-Sobolev spaces without any restriction on the $M$ N-function of the Orlicz spaces, where $-operatorname{div}Big(a(x,u,nabla u)Big)$ is a Leray-Lions operator defined f...

متن کامل

Multiple Solutions for a Singular Quasilinear Elliptic System

We consider the multiplicity of nontrivial solutions of the following quasilinear elliptic system -div(|x|(-ap)|∇u|(p-2)∇u) + f₁(x)|u|(p-2) u = (α/(α + β))g(x)|u| (α-2) u|v| (β) + λh₁(x)|u| (γ-2) u + l₁(x), -div(|x|(-ap) |∇v| (p-2)∇v) + f₂(x)|v| (p-2) v = (β/(α + β))g(x)|v|(β-2) v|u|(α) + μh 2(x)|v|(γ-2)v + l 2(x), u(x) > 0, v(x) > 0, x ∈ ℝ(N), where λ, μ > 0, 1 < p < N, 1 < γ < p < α + β < p* ...

متن کامل

A Singular Quasilinear Anisotropic Elliptic Boundary Value Problem. Ii

Let Ω ⊂ RN with N ≥ 2. We consider the equations N ∑ i=1 ui ∂2u ∂xi + p(x) = 0, u|∂Ω = 0, with a1 ≥ a2 ≥ .... ≥ aN ≥ 0 and a1 > aN . We show that if Ω is a convex bounded region in RN , there exists at least one classical solution to this boundary value problem. If the region is not convex, we show the existence of a weak solution. Partial results for the existence of classical solutions for no...

متن کامل

On Noncoercive Elliptic Problems with Discontinuities

In this paper using the critical point theory of Chang [4] for locally Lipschitz functionals we prove an existence theorem for noncoercive Neumann problems with discontinuous nonlinearities. We use the mountain-pass theorem to obtain a nontrivial solution.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2021

ISSN: ['0944-2669', '1432-0835']

DOI: https://doi.org/10.1007/s00526-021-01965-z